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Path-Integral Approach to the Statistical Physics of
One-Dimensional Random Systems
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A path-integral method is extended and developed to investigate the statistical
physics of one-dimensional random systems. Evaluation of the one-particle
partition function and density matrix is simplified to finding a solution for a
second-order ordinary differential equation. This makes it possible to obtain
analytic solutions or conduct accurate numerical calculations for the random
systems. With this approach, an analytical solution for the Gaussian model is
obtained and the statistical physics of the Frisch�Lloyd model is studied.
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1. INTRODUCTION

Joaquin M. Luttinger was not only one of the major figures in statistical
and condensed matter physics, but also a dedicated teacher and mentor. As
his doctoral student, I still remember the days when we worked together at
Columbia University. Joaquin became my advisor in early 1980. We met
and discussed physics almost every day in the following two and half years.
His enthusiasm, dedication, friendly spirit and careful teaching strongly
influenced me. He distinguished himself in promoting the relationship
between students and advisor, too. I miss him forever.

One project we worked together was a new method to obtain exact
evaluation of Green's functions for a class of one-dimensional disordered
systems. The method was a combination of the ``replica trick'' and the
Feynman expression for the propagator in terms of path integral.(1) This
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method was later found very useful in study of the diffusion in random
media.(2�4) The results for the diffusion are useful for polymer growth in a
random environment, (5�7), chemical reaction with random nucleation centers,
and biological multiplication with random nutrient concentration.(3)

In this paper, I am going to extend and further develop this method
to investigate the statistical physics of one-dimensional random systems.
The 1+1-dimensional random potential was an important starting point in
theoretical statistical physics and investigation of disordered systems. Recent
experimental observation of mesoscopic vortex using micromechanical
oscillators provided a direct test of these systems.(8) Such developments
stimulate renewed interest in examining these random systems. As it will be
shown later, our path-integral approach is a general and powerful tool in
obtaining the partition function and density matrix for these systems.

As shown in Section 2, this path-integral approach enables me to
derive a general analytical expressions for the partition function and den-
sity matrix for a class of one-dimensional random systems. These analytical
results are new and general. They simplify the evaluation of the one-particle
partition function and density matrix to finding a solution for a second-
order ordinary differential equation. As ordinary differential equations are
one of the most studied subjects, these results are useful and readily
applicable. This makes it possible to obtain analytic solutions or conduct
accurate numerical calculations for the random systems.

To illustrate the generality and usefulness of these analytical results,
I apply the formalism to two popular random systems: In Section 3, I will
derive the analytical solution for the Gaussian random system(9) and in
Section 4 I will derive results for the Frisch�Lloyd random system.(10)

While these two models were extensively studied, the main works were con-
centrated on the low energy tail, which corresponds to the low temperature
limit in this paper. However, the analytical solution of the partition func-
tion and density matrices derived from the path-integral approach provides
the results well beyond the low temperature limit. We have the partition
function for the whole temperature range. These results show new features
of the two models in the region where the low energy tail is not applicable.

2. DENSITY MATRIX AND CANONICAL PARTITION FUNCTION

Let us consider non-interacting particles in a random potential con-
fined on a line of length L. The one-particle Hamiltonian is given by

H=
p2

2m
+V(x) (2.1)
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where V(x) is a random potential and 0�x�L. The un-normalized density
matrix is given by

\=e&;H (2.2)

where ;=1�kBT. I denote

\(x, x$; ;)=(x| e&;H |x$)=:
n

e&;En�n*(x) �n(x$) (2.3)

where �n is the eigenfunction of H with eigenvalue En . The boundary con-
dition is \(x, x$; 0)=$(x&x$). In this paper, ( ) is used for Dirac nota-
tions and ( ) ave is denoted for the average over the random potential.
Define

g(x, x$; E )=
1
?

Im(x|
1

E&H&i'
|x$) (2.4)

Here the notations Re and Im are for the real part and imaginary part,
respectively. It is clear that

\(x, x$; ;)=|
�

&�
e&;Eg(x, x$; E ) dE (2.5)

Since the Hamiltonian H is real, for simplicity, we make all its eigenfunc-
tions real. The above equation can be written into a path integral

g(x, x$; E )=&
2
?

Re
� d� �(x) �(x$) exp[&i � d! �(!)(E&H&i') �(!)]

� d� exp[&i � d! �(!)(E&H&i') �(!)]

(2.6)

The replica trick enables us to write g(x, x$; E ) into

&
2
?

Re lim
n � 0 | d� �1(x) �1(x$)

_exp _&i | d! � \E+
�2

2m
�2

�!2+ �+i | V�2 d!& (2.7)

where � is an n-dimensional vector. As we take average over the random
potential, only the term containing V needs to be considered. For a class
of random potential, this average leads to

�exp _i |
L

0
V(!) �2(!) d!&�ave

=exp _&i |
L

0
d! U(�2(!))& (2.8)
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where the function U depends on individual models. In the following two
sections we will derive this function for the Gaussian random potential and
the Frisch�Lloyd random potential. In ref. 1, there were discussions about
this sample average for other random systems.(1)

Introduce a transformation, � � � - m��. The average (g(x, x$; E )) ave

is given by

&
2m
�2?

Re lim
n � 0 | d� �1(x) �1(x$)

_exp _&i | d! _� \mE
�2 +

1
2

�2

�!2+ �+U \�2m
�2 +&& (2.9)

As shown in ref. 1, the above equation is simplified to

(g(x, x$; E )) ave=&
2m
�2?

Re |
�

0
|

�

0
dr dr$ ,0(r) ,0(r$) G(r, r$; x&x$) (2.10)

where G(r, r$, t) is a Green's function satisfying the equation,

i
�G(r, r$, t)

�t
=_&

1
2 \

�2

�r2&
1
r

�
�r

+
1
r2++

mE
�2 r2+U \r2m

�2 +& G(r, r$, t)
(2.11)

with the boundary condition G(r, r$; 0)=r$(r&r$); ,0 is the solution of the
equation

_&
1
2 \

�2

�r2&
1
r

�
�r++

mE
�2 r2+U \r2m

�2 +& ,0=0 (2.12)

with the boundary condition ,0(0)=1 and ,0(�)=0. Using u=r2�2, we
transform Eq. (2.12) into the form

�2,0

�u2 &_2mE
�2 +

U(2um��2)
u & ,0=0 (2.13)

The sample-averaged density matrix is given by

(\(x, x$; ;))ave

=&
2m
�2?

Re |
�

&�
e&;E dE |

�

0
|

�

0
dr dr$ ,0(r) ,0(r$) G(r, r$; x&x$)

(2.14)
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From Eq. (2.10), when x=x$, we have

(g(x, x; E )) ave=&
2m
�2?

Re |
�

0
,2

0 du (2.15)

Differentiating Eq. (2.13) with E, we get

�2

�u2 \�,0

�E +&_2mE
�2 +

U(2um��2)
u &\�,0

�E +&
2m
�2 ,0=0 (2.16)

Multiplying Eq. (2.16) by ,0 , Eq. (2.13) by �,0 ��E, subtracting and
integrating over u, we find

2m
�2 |

�

0
,2

0 du=
�

�E
,$0(u)|u=0 (2.17)

Hence we have

(g(x, x; E ))ave=&
1
?

Re _ �
�E

,$0(u)|u=0 & (2.18)

The one-particle partition function f is then given by

f (;)=| (g(x, x; E )) ave e&;E dx dE

=&
L;
? |

�

&�
dE e&;E Re[,$0(u)| u=0] (2.19)

The calculation of f (;) is now simplified to finding ,$0(u) |u=0 from
Eq. (2.13). While the particular form of ,0 depends the behavior of U, some
general discussions are helpful. Let us denote two independent solutions
of Eq. (2.13) as , (1)

0 and , (2)
0 , satisfying , (1)

0 (0)=1, [d, (1)
0 �du] |u=0=0,

,(2)
0 (0)=0, and [d, (1)

0 �du] |u=0=1, respectively. Since these two solutions
have the boundary conditions at u=0, they are easy to calculate. The solu-
tion ,0 is a combination of , (1)

0 and , (2)
0 ,

,0=, (1)
0 ++, (2)

0 (2.20)

The constant + is determined by the condition

+=& lim
u � �

, (1)
0 (u)�, (2)

0 (u) (2.21)
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Then, ,0(�)=0 and ,$0(0)=+. The partition function is given by

f (;)=&
L;
? |

�

&�
dE e&;E Re(+) (2.22)

The new analytical results in Eq. (2.19) and (2.22) are general and
powerful. As the ordinary differential equations are one of the most studied
subjects, these results are also practical and readily applicable. For many
cases, such as for the Gaussian model, we have an analytical solution from
Eq. (2.13). Then we have the analytical solution for the partition function.
Even if an analytical solution for Eq. (2.13) is not available, such as for the
Frisch�Lloyd model, Eq. (2.19) or Eq. (2.22) provides the direction for a
straightforward and accurate numerical calculation.

In the following two subsequent sections, we will apply the above
analytical results to find the partition function for the Gaussian model and
Frisch�Lloyd model. These two applications are just an illustration, showing
how we can readily apply the above analytical results to particular models
for calculation.

3. GAUSSIAN MODEL

The white-noise Gaussian potential(9) is characterized by

(V(x1) } } } V(x2l&1))=0

(3.1)
(V(x1) } } } V(x2l))= :

i1 } } } i2l

Dn

2n $(xi1
&xi1

) } } } $(x i2l&1
&xi2l

)

where l=1, 2,... and �i1...i2l
extends over all possible partitions of the 2l

indices (1, 2,..., 2l ) into l pairs (i1 , i2) } } } (i2l&1 , i2l). Hence, the average over
the random potential in Eq. (2.8) leads to

�exp _i |
L

0
V(!) �2(!) d!&�ave

= :
�

l=0

i l

l ! |
L

0
} } } | dx1 } } } dxl(V(x1) } } } V(xl)) �2(x1) } } } �2(xl)

= :
�

m=0

i 2m

(2m)!
Dm

2m (2m&1)! _|
L

0
dx �2(x)&

m

=exp _&
D
4 |

L

0
dx[�2(x)]2& (3.2)
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Comparing with Eq. (2.8), we have U(�2)=&iD(�2)2�4. Then from
Eq. (2.13), we have the equation for ,0 ,

�2,0

�u2 +\&
2mE

�2 +i
Dm2

�4 u+ ,0=0 (3.3)

which implies that ,0 is an Airy function. After taking the boundary condi-
tions into account, we represent ,0 in the form

,0=
(1&(iDm�2E�2) u)1�2 H (1)

1�3[2mD1�2(&2E�2�Dm+iu)3�2�(3i�2)]
H (1)

1�3[25�2�(&E )3�2�(3im1�2D)]
(3.4)

where H (1)
1�3 is the Hankel function of the first kind. We then have

,$0(u) |u=0=&
iDm
4E�2+

(&2mE )1�2 H (1)$
1�3 [&25�2�(E )3�2�(3m1�2D)]

�H (1)
1�3[&25�2�(E )3�2�(3m1�2D)]

(3.5)

Introducing

Z(E )=(&E )1�2 H (1)
1�3[&25�2�(&E )3�2�(3m1�2D)] (3.6)

we have

,$0(u) |u=0=&
iDm
2�2

Z$(E )
Z(E )

(3.7)

Hence

(g(x, x; E ))ave=&
Dm
2?�2 Im

�
�E _Z$(E )

Z(E ) & (3.8)

The one-particle partition function f is given by

f (;)=
&LDm;

2?2�2 Im |
�

&�
e&;E _Z$(E )

Z(E ) & dE (3.9)

Before calculating Eq. (3.9), we note that Z(E ) satisfies the Airy equation

Z"(E )+
8�2

D2m
EZ(E )=0 (3.10)
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The second independent solution of Eq. (3.10) is Z*(E ), complex con-
jugate of Z(E ) for a real E. The Wrongskian of these two solutions is a
constant, given by

Z$(E ) Z*(E )&Z(E ) Z*$(E )=&6i�? (3.11)

Then from

Im _Z$(E )
Z(E ) &=&

i
2 _

Z$(E )
Z(E )

&
Z*$(E )
Z*(E ) &=

&3
? |Z(E )| 2 (3.12)

we have

f (;)=
3LDm;
2?3�2 |

�

&�

e&;E

|Z(E )| 2 dE (3.13)

In calculating Eq. (3.13), we divide the integration into two parts �0
&� and

��
0 . After some algebra, we have

f (;)=
3LDm;
2?3�2 |

�

0

d'
' _ e';�;0

|H (1)
1�3(&i'3�2)| 2+

e&';�;0

|H (1)
1�3(&'3�2)| 2& (3.14)

where ;0=(25�2��3Dm1�2)2�3. Equation (3.14) is the analytical result for the
partition of the Gaussian model. As ' � �, the asymptotic behavior for the
two Hankel functions in Eq. (3.14) are different,

|H (1)
1�3(&i'3�2)|2 �

2
?'3�2 exp(2'3�2) (3.15)

and

|H (1)
1�3(&'3�2)|2 �

2
?'3�2 (3.15$)

The integral in Eq. (3.14) is convergent. In Fig. 1, we plot Log f (;) versus ;.
It is noted that at low temperature, the behavior of f (;) of the Gaussian
model is completely different from the partition function of free particles.
The reason is that the white-noise Gaussian potential is not bounded
below. Although the probability is low to have a very large negative poten-
tial, it can happen during the sample average. At low temperature, some
low energy states produced by such very negative potentials dominate the
partition function. This changes the behavior of f (;) and leads to a very
large negative average energy at low temperature.

582 Tao



File: 822J 493009 . By:BJ . Date:11:01:01 . Time:09:49 LOP8M. V8.B. Page 01:01
Codes: 1900 Signs: 1060 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Log f(;) as a function of ;�;0 for the Gaussian model.

At high temperature, ;<;0 , or kB T>(3Dm1�2�25�2�)2�3, the main con-
tribution to f (;) is from the second term in Eq. (3.14),

f (;) � L � m
2?3�2;

(3.16)

The average particle energy is ==kBT�2, a typical result in the high tem-
perature limit.

At low temperature, ;>;0 , or kBT<(3Dm1�2�25�2�)2�3, the main con-
tribution to f (;) is from the first term in Eq. (3.13). Using the saddle-point
method, we have the asymptotic behavior,

f (;) �
LD2m3�2;5�2

27�2?3�2�3 exp \ ;3

27;3
0+ (3.17)

Therefore, at low temperature, we have the average energy

==&
� Log f (;)

�;
=&

;2

9;3
0

(3.18)

This confirms that the Gaussian model has a vary large negative average
energy at low temperature. It is interesting to note that this result is
associated to the diffusion in random media.(2�4)

The Gaussian model was extensively studied previously. The main
works in the past were concentrated on the low-energy tail.(9) These results
are consistent with our low temperature limit in Eq. (3.18). However, the
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general partition function in Eq. (3.14) covers the whole temperature range
and shows that the behavior of f (;) changes as ; crosses ;0 .

4. FRISCH�LLOYD RANDOM SYSTEMS

The Frisch�Lloyd model(10) has the random potential

V(x)=V0 :
N

j=1

$(x&xj ) (4.1)

where V0 is fixed and xj are randomly chosen in (0, L). In the thermo-
dynamic limit, L � �, N � �, but the density N�L=n remains fixed.

From Eq. (2.8), the average over the random potential can be
calculated as follows,

|
L

0

dx1

L
dx2

L
} } }

dxN

L
exp _i :

N

j=1

V0�2(xj )&
=_1

L |
L

0
dx e iV0�2(x)&

N

=_1&
n
N |

L

0
(1&eiV0�2(x))&

N

=exp _&n |
L

0
[1&eiV0�2(x)] dx& (4.2)

This leads to U(�2)=&in(1&eiV0�2
). We introduce *=2mV0 ��2. From

Eq. (2.13), the function ,0 is the solution of the equation

d 2,0

du2 &_2mE
�2 +

n
iu

(1&ei*u)& ,0=0 (4.3)

with the boundary condition ,0(0)=1 and ,0(�)=0. At this stage, we
have no analytical solution for the above equation, but the partition func-
tion can be calculated straightforward.

Let us first apply the general method discussed in Section 2 to Eq. (4.3).
Introduce u=��- 2mE and two dimensionless parameters, :=*�2=
2mV0 �(n�2) and #=n��- 2mE . Then, Eq. (4.3) becomes

d 2,0

dz2 =_1+
#
iz

(1&ei#:z)& ,0 (4.4)

While # depends on E, : is independent on E. From Eq. (4.4), we calculate
two independent solutions, , (1)

0 (z) and , (2)
0 (z) that have the boundary con-

ditions, , (1)
0 (0)=1, [d, (1)

0 �dz] |z=0=0, , (2)
0 (0)=0, and [d, (1)

0 �dz] |z=0=1,
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respectively. As both , (1)
0 and , (2)

0 have the boundary conditions at z=0,
they can be integrated easily from Eq. (4.4). The following expression
defines a constant g as a function of : and #,

g(:#, #)=& lim
z � �

, (1)
0 (z)�, (2)

0 (z) (4.5)

Then, ,0=, (1)
0 (z)+ g(:#, #) , (2)

0 (z) � 0 as z � � and

Re \d,0

du + |u=0

=
- 2mE

�
Re[ g(:#, #)] (4.6)

Introduce ;0=2m�(n�)2, which defines an intrinsic temperature for the
model. The one-particle partition function is given by

f=&2N
;
;0

|
�

0
d# exp _&

;
;0#2& Re[ g(:#, #)]�#4

=f (;�;0 , : - ;�;0 ) (4.7)

To examine how the partition function changes with ;�;0 , we plot Log( f )
in Fig. 2 as a function of ;�;0 and :. As expressed in Eq. (4.7), f is a func-
tion of ;�;0 and :(;�;0)1�2. This provides important scaling information. At
high temperature, ;<<;0 , f tends to t- ;0 �;, leading to the average
energy kBT�2. However, at low temperature ;>>;0 , we see that f does not
only depend on ;�;0 , but also relates to : - ;�;0 .

To confirm the above scaling information, we consider the case of
small n. At low concentration of impurities, we can expand ,0 in powers
of n. Taking

,0=exp \|
u

0
y(s) ds+ (4.8)

we then have Eq. (4.3) as

y$(u)+ y2(u)=
2mE

�2 +
n
iu

(1&ei*u) (4.9)

The boundary condition ,0(�)=0 becomes

lim
u � � |

u

0
Re[ y(s)] ds=&� (4.10)

In addition,

,$0(u) |u=0= y(0) (4.11)
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Fig. 2. The partition function Log(2 f�N ) as a function of ;�;0 and : for the Frisch�Lloyd
model.

As n is small, expanding y(s) in powers of n,

y(s)= y0(s)+ny1(s)+n2y2(s)+ } } } (4.12)

we find

y$0+ y2
0 =

2mE
�2

y$1+2y0 y1=
1&ei*u

iu
(4.13)

b
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If E>0, we have

y0(u)=&- 2mE��=&k

y1(u)=&|
�

u
ds e&k(s&u)(1&e i*s)�is (4.14)

b

Therefore, if we only keep the first order of n,

Re[,$0(u) |u=0]=&k+n tan&1(*�2k) (4.15)

Similarly, if E<0, we expand ,0 in powers of n and find Re[,$0(u) |u=0]
=0. Thus, the one-particle partition function to the first order of n is given
by

f =L � m
2?�2;

+
nL
2 {1&_1&8 \ *� - ;

2 - 2m+& e ;�2*2�8m= (4.16)

where 8(x)=(2�- ?) �x
0 e&t2 dt is the probability function. The result in

Eq. (4.16) can be rewritten as

f =
N

2 - ? \
;0

; +
1�2

+
N
2 {1&_1&8 \�:2;

4;0+& ea2;�4;0= (4.17)

Equation (4.17) is consistent with Eq. (4.7), verifying the scaling informa-
tion. For example, if at low temperature we have ;�;0>1 but : - ;�;0 <1,
the average energy from Eq. (4.17) is given by

==\kBT
2 +(;0 �;)1�2&:(;�;0)1�2

(;0 �;)1�2+:(;�;0)1�2 (4.18)

The Frisch�Lloyd model was widely studied for the Lifshits tail, (11) which
corresponds to the low temperature limit here. The current analytical
results in Eq. (4.7) and Fig. 2 are well beyond the low temperature limit.
The results also identify that the behavior of the partition function changes
when ; crosses ;0 . The important scaling information for the model is a
new result.

In summary, the application of the analytical results to the above two
models in Sections 3 and 4 shows that the path-integral method is general
and powerful. The derived formalism can be readily applicable to many
other one-dimensional random systems to investigate the statistical physics
of these systems.
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